
OLIN-NASA RESEARCH GROUP, JULY 2011 1

Digital X-ray Signal Transmission
Sasha Sproch, Sarah Strohkorb, Cypress Frankenfeld, and Jessica Bethune

Satatus Report

Abstract—The ability to transmit digital signals via X-ray will
redefine the current boundaries of speed, distance, fidelity, and
precision in wireless communications. The immediate objective
of this project is to enable transmission of digital X-ray signals
by coupling a high speed digital RS232 communication infras-
tructure to a preexisting X-ray transceiver. Circuits and software
on each end of the transceiver system interface with the RS232
protocol, enabling signal speeds of up to 4800 Baud. In the future,
transmissions will be higher power and capable of interplanetary
communication at much higher transmission rates.

I. INTRODUCTION

X -RAY communication is analogous to fiber optic trans-
mission on a much larger scale– it enables long-distance,

high-speed, robust digital communication, with the implication
of promising applications: communications with spacecraft
reentering the atmosphere during the hypersonic blackout pe-
riod, high-speed interplanetary communication, secure short-
range communication, etc. Technological advances in X-ray
communication could also lead to interstellar X-ray navigation.

Dr. Keith Gendreau, of NASA Goddard Space Flight Center,
developed an X-ray transceiver system which he used to
transmit audio through analog frequency modulation. Origi-
nally, he suggested that our team attempt to transmit digital
video over the MXS using a USB webcam, but we concluded
that demultiplexing the bidirectional USB cables would be
impractical for a summer project. Our revised goal brings us a
step toward video transmission: an upgrade of Dr. Gendreau’s
demo from analog to digital transmission capabilities.

Statement of Work

We will couple a high speed digital RS232 communication
infrastructure to the MXS transceiver. Our system will drive a
255 nm UV LED with 20 mA (and the capability of driving
10 parallel LEDs with 200 mA), and will filter and amplify
the output of the X-ray transceiver. We will use a chat client to
establish a unidirectional X-ray communication link between
two computers. To make the link bidirectional, we need only
add another MXS transceiver and a duplicate of our LED
driver and filtering circuitry.

II. THE SYSTEM

The X-ray transceiver system developed at Goddard Space
Flight Center by Dr. Gendreau, and used in our tests, consists
of an emitter and detector. The emitter, or Modulated X-
ray Source (MXS), emits characteristic X-rays focused in a
beam and directed toward the detector, also called the Multi-
Channel Analyzer (MCA). The MCA generates a short (10 ns)
voltage spike corresponding to each detected X-ray photon.
The MCA produces a burst of X-rays for each logic 1, and

the resulting bursts of voltage spikes vary significantly in
amplitude, causing the signal to noise ratio (SNR) to be very
low. The effective output signal of the MCA is low level white
noise for a logic 0, and higher amplitude white noise for logic
1, as seen in the oscilloscope trace in Figure 1.

Fig. 1. The yellow waveform is the input signal; A ± 7.5 V binary
representation of two ascii characters (’1’ followed by newline) sent with
RS232 protocol. The purple waveform is the output of the MCA with no
filtering; voltage spikes of about 200 mV can be seen at each space in the
input. A negative input voltage (mark) corresponds to low level white noise,
and a positive input (space) corresponds to high level white noise.

The irregularity of the individual x-ray pulses makes the
signal susceptible to bit errors. Our most challenging task for
this project was to filter and condition the output signal into
a clean, digital signal, like the input.

Figure 2 depicts a high-level overview of how the MXS
works. The ultraviolet (UV) light-emitting diode (LED) shines
onto a photocathode, which emits electrons due to the photo-
electric effect. The electrons then travel through the electron
multiplier (which increases the number of electrons by several
orders of magnitude) and are accelerated into a high-voltage
target. When hit by the electrons, the electron target emits
characteristic X-rays.

We key the LED on and off to modulate the electrons and
thus the X-rays. The output of the X-ray detector shows groups
of voltage jumps that correspond to the on times for the LED–
each space in the input signal.

The physical MXS setup used to test our system is displayed
in Figure 3. A high voltage power supply powers the electron
target and multiplier, and a signal generator drives the LED.
We view the output signal of the detector on an oscilloscope.

To transmit a digital signal using the MXS and give Dr.
Gendreau the tools to make a digital transmission demonstra-
tion, we manipulate the signal on both the transmitting and
receiving ends of the X-ray transceiver system, modeled in



OLIN-NASA RESEARCH GROUP, JULY 2011 2

Fig. 2. The MXS transmits X-rays when the UV LED is iluminated. Light hits
a photo-cathode, where photon energy is absorbed and released in the form of
photo-electrons. These photo-electrons are multiplied and then accelerated into
a target, which emits characteristic X-rays to be detected by the photodiode
in the MCA.

Fig. 3. Lab setup. X-rays are transmitted a distance of less than ten
centimeters for safety reasons.

Figure 4. We develop software and hardware on each end to
make our system compatible with any RS232 transmission.
The software on the transmit end sets the baud rate, serial port
permissions, and other settings necessary to send the signal.
We pass the signal through a MAX232 integrated circuit (IC)
followed by a transistor current switch to ensure that the UV
LED receives the proper current and voltage levels. After the
signal is sent through the MXS, the output of the detector
is weak and noisy due to physical properties of the system
beyond our control. We amplify and filter the output of the
MCA until it is a close enough approximation to the input
signal for the MAX232 chip to transmit it to a computer on the
other end without bit errors. Finally, software on the receiving
computer ensures that the baud rate and similar settings are
compatible, and presents the sent information in an easily
understood, visual way.

Fig. 4. Abstract model of entire system. A MAX232 and LED control circuit
to modulate the LED. A second circuit takes the output signal of the MXS
and transforms it back into a digital signal, which is passed through another
MAX232 to the second computer.

III. HARDWARE

The hardware required for this system includes the control
circuit used to drive the UV LED which transmits the signal,
and the transformer circuit used to clean up the MCA output
signal, making it compatible with the receiving computer.

LED Control Circuit
RS232 signals can be sent at voltages ranging from ±3 to

±15 Volts. This wide spectrum is dangerous when trying to
interface with transistor circuits because the smaller voltages
will not drive transistors into saturation, and the larger voltages
can create surges fatal to the transistor. The MAX232 solves
this problem by transforming the computer’s high-amplitude
square wave signal into a 0V to 5V TTL signal.

Fig. 5. LED control circuit with an input from the RS232 connector to the
LED that controls the MXS. Full page image can be found in the appendix.

The MAX232 does not provide enough current to drive the
LED fully on, so we used a transistor switch to modulate
power from an external supply. When the input voltage to the
amplifier is high, the switch turns on and current can flow
from the collector to the emitter of an NPN transistor, and
consequently, current can flow through the LED connected to
the transistor’s collector. When the input to the amplifier is
low, the switch turns off, cutting current to the LED.

Transceiver Output Conditioning Components
After transmission through the MXS and MCA, the signal

needs to be conditioned into a digital signal, as represented



OLIN-NASA RESEARCH GROUP, JULY 2011 3

in Figure 6. A combination of several building blocks are
used to construct this filter.

Fig. 6. Top: example of the output of the MXS when given a square wave
input. Bottom: desired signal after filtering and conditioning.

Amplifiers: We use simple inverting/non-inverting voltage
amplifiers made from either an AD848 or AD847 operational
amplifier (op-amp). The AD848/AD847 has a higher gain
bandwidth product (GBP) and a higher slew rate than the
typical op-amp, such as the TL081. The higher GBP of the
AD848 (175 MHz) and AD847 (50 MHz), allows them to
function at much higher frequencies than the TL081 (3 MHz
GBP). Likewise, the higher slew rate of of the AD848/AD847
(300 V/us) allows a faster response time to voltage changes
than that of the TL081 (16 V/us). The extremely high GBP
on the AD848 creates limitations, however– it requires a
minimum gain of 5, causing voltages in a cascaded circuit to
rail easily. Our team therefore uses AD848 op-amps for high
gain amplifiers and AD847 op-amps for low gain amplifiers
and unity buffers.

Peak-hold Detector: The peak-hold detector, the core of
our MXS output circuitry, allows us to transform the noisy
pulses from the MXS into a comparatively clean waveform.
Our project necessitates a high slew rate in order to detect
narrow voltage spikes (on the order of 10 ns).

To keep the AD848’s output from saturating at VCC , We
adjust the gain and offset of the amplifier directly before the
peak-hold detector, tuning it to respond best to the MCA
signal. Because we observe highly varied MCA outputs, (cor-
responding to differences in temperature, spatial positioning,
proximity to power supplies, etc.) we do not recommend
fixed resistors for these jobs. For simplicity, however, and to
limit parasitic resistances/capacitances in our breadboards, we
choose fixed gains, and leave only the offsets variable.

The peak-hold detector’s behavior is dependent on its RC
time constant and op-amp GBP. The RC value determines
the drop-off speed after each voltage peak. If held too long,
a peak interferes with signal transmission by widening the
apparent width of the bits being sent; if the peak decays to
quickly, the circuit output drops to 0V in between peaks in
the middle of an on bit, creating a false 0. Figures 7 and 8
demonstrate peak-hold detector responses to square waves

created with a signal generator at key RC values.

Fig. 7. Peak-hold response to a 5 KHz square wave. The output signal (blue)
falls to zero just as the next peak retriggers it.

Fig. 8. Peak-hold response to a 50 KHz square wave. The blue output signal
never falls to zero.

Schmitt Trigger / Comparator: We use a Schmitt trigger to
make the output of the peak hold detector a clear digital signal.
A Schmitt trigger has two threshold levels; as long as the
signal is below the lower threshold, the Schmitt trigger outputs
0V, but once the signal is above the higher threshold, the output
is 5V. While the signal is between the two thresholds, the
output of the Schmitt trigger does not change.

The IC Schmitt trigger (74HC14) only takes input signals
in the voltage range of 0V to 5V, so we create our own
Schmitt trigger using an op-amp with an adjustable virtual
ground and a variable gain. This enables us to tune our
Schmitt trigger to give us the level of hysteresis we need.
Keeping these values adjustable is advisable because the
MCA output is highly varied.

MAX232: Once the signal is digital, the MAX232 IC can
convert it from 0 to 5 volts into a ±7.5V signal or vice
versa. The MAX232 offers very robust signal conditioning
for RS232 drive capability.

Transceiver Output Conditioning Circuit

Our final conditioning circuit, seen in Figure ??, utilizes
a combination of the aforementioned building blocks. First,



OLIN-NASA RESEARCH GROUP, JULY 2011 4

an AD848 conditioning amplifier, with noise-filtering capac-
itors near the pins, increases the resolution and SNR of the
MCA’s output. Second, an amplifier with an adjustable offset
centers the signal around zero. Ideally, the gain would also
be adjustable, but for testing purposes we choose fixed gains.
This second amplifier is non-inverting for the positive MCA
channel, and inverting for the negative channel. We use only
the negative channel due to its stronger signal. Because the
signals are just inversions of each other, using both adds
nothing to the system. When adjusting the offset, we want
to eliminate false 1s, but allow false 0s. Output from the
gain/offset amplifier travels into a peak-hold detector (made
of a 1N4148 diode and an RC filter), which leads into our
discrete-component Schmitt trigger. At this point, the signal
is digital with some false 0s. We run the signal through a
MAX232, another peak-hold detector, and an AD847 unity-
gain buffer. We then pipe the final signal, seen in Figure ??,
into the reciever pin (pin 2) of an RS232 cable.

Fig. 9. Conditioning circuit, tuned roughly for 4800 baud transmission. Full
page image can be found in the appendix.

Fig. 10. Successful transmission: the filtered output of the MCA (blue) is
an amplified copy of the MXS input (yellow).

Troubleshooting

We encountered the following defects in the MXS output
signal; they may be endemic to our specific experiment (our
setup, or local radio interference) or to the system as a whole.
The signal quality degrades toward the end of the pulse
at low frequencies, rendering a low pass filter useless. The
occasional and unpredictable scarcity of high amplitude peaks
during one LED pulse makes a peak-hold detecor difficult– if

possible– to properly tune. Something in the MCA seems to
have a thermal sensitivity, because extended use corresponds
with severe signal degredation which resolves itself if the
MCA is unplugged and otherwise left alone for an hour
or more. Additionally, target high voltage source (THVS)
malfunctions have skewed some results during testing. In its
upright position, the THVS tends to superimpose a 1 kHz sine
wave over the output, as seen in Figure ??. Lose components
or a grounding problem in the circuitry may be causing this
phenomenon. As a temporary solution we turn the THVS box
on its side until it can be repaired or replaced.

Fig. 11. A 1 kHz sine wave can be seen on both the positive (yellow) and
negative (blue) MCA outputs. The input to the MXS is just under a 1 kHz a
square wave– the input function appears to have no effect on the superimposed
sine wave.

IV. SOFTWARE

Custom Signals

Modern high-speed digital communication protocols, be-
cause of elaborate error control and handshaking, can impede
our ability to control and debug the signals at the bit-level.

Fig. 12. Three pins connecting the microcontrollers.

To establish complete signal control, we create a simple
digital communication protocol by programming two micro-
controllers. We use three wires to connect them, which we
refer to as Mark, Space, and Confirm.

This protocol is unidirectional. A single bit is sent in 5
stages.

1) Microcontroller A raises voltage on the mark pin.
2) Microcontroller B responds by raising the confirm pin.
3) A sees the confirm pin has been raised, and responds by

lowering the mark pin.
4) B sees that the voltage has been lowered once again,

and responds by lowering the confirm pin.
5) A sees that the confirm pin has been lowered, and

thus decides it is safe to send another bit (repeat from
beginning).



OLIN-NASA RESEARCH GROUP, JULY 2011 5

The same process can be used to send a space bit. Mark
and space bits correspond to 1s and 0s in a digital signal. The
system functions irrespective of transmission speed; micro-
controller A will wait indefinitely for the confirmation signal
before it proceeds. This circumvents any problems arising
from signal delay.

UART Between Microcontrollers

We use the built in Universal Asynchronous Re-
ceiver/Transmitter (UART) in the microcontrollers to send
serial data. Hooking the transmit pin of one microcontroller
to the receive pin of another, we send bytes of data at
a specified baud rate using the Serial.write() and
Serial.read() functions. This approach is a proof of
concept: we can demonstrate transmission of data in the RS232
protocol via a microcontroller.

Microcontroller To Computer

To achieve a connection between the microcontroller and
the computer, the low output voltages of the microcontroller
need to be inverted and amplified into the RS232 range with
a MAX232 chip.

A Unix based system developed in 1962, RS232 protocol
uses the stty command to establish baud rate, end of a
line or file characters, etc. We create a Bash program that
establishes base settings uniform across devices, and use a
Unix shell to receive data from the microcontroller by running
cat /dev/ttyS0, which outputs the characters from the
serial port into the shell display.

Computer Loopback

To ensure that the computer can send a signal, we test
with an RS232 loopback connection– we interconnect pins
1, 6, and 4, pins 7 and 8, and pins 2 and 3 (the receive
and transmit pins). We then run echo A > /dev/ttyS0
while simultaneously waiting for a response with the command
cat /dev/ttyS0. The transmission sent by the transmit
computer is read by the same computer and output in a
terminal. This allows us to easily test serial port settings and
maintain compatability.

RS232 Between Computers

We connect two computers using the above loopback
connection (with the exception that pins 2 and 3 are in-
terconnected between computers with a null modem), en-
sure that all the stty settings are the same, and then
run echo A > /dev/ttyS0 in one computer (transmit)
while running cat /dev/ttyS0 in another (receive). The
transmit computer sends the signal and the receive computer
prints the signal to its terminal. This demonstrates that the
two computers are able to transmit and receive RS232 data
between each other.

Chat Client

A short Bash script automates the communication between
two computers. It automatically maintains consistent settings
and listens for an input signal between devices. The commands
read input; echo "${input}" > /dev/ttyUSB0
simplify the user interface by enabling users to directly input
multiple messages while concurrently receiving data from the
linked computer, without the need for manual port specifica-
tion.

Remote Terminal

We use a getty server running as an upstart service on
the host computer. We connect, via RS232, from another
computer running minicom. In order to connect properly, we
need to configure getty correctly, and configure minicom to
match the getty. By connecting via a remote terminal, we have
full control over one computer via a UNIX Shell in another
computer, all running through RS232.

File Transfer

Once the remote terminal is set up, we use the ZMODEM
protocol to transfer files from one computer to another through
minicom. File transfer speeds are fast enough to transfer
an image, but too slow to transfer a 70 MB file within a
reasonable amount of time (24 hours).

V. RESULTS

Proof of Concept

The LED and photodiode proof of concept shown in Figure
?? represents the ideal transceiver behavior, with perfect MXS
modulation and MCA detection of the X-ray signals. We put
the RS232 transmit computer signal through a MAX232 chip
to drive the LED, which is aimed at a photodiode that can
detect every pulse (marked by a voltage increase). This signal
goes through two inverting amplifiers so that the signal ranges
roughly from 0-5V. Another MAX2332 transforms the signal
into RS232 voltage levels, which are sent back to the receiving
computer. Using this setup, we are able to use the chat client
to transmit digital signals at 115,200 baud without any errors.

Fig. 13. Proof of concept. An LED and photodiode replace the X-ray
transceiver. The RS232 signal, passing first through a MAX232, drives the
LED. The light signal is detected by the photodiode, then amplified and piped
through a second MAX232 so that the recieve computer can read it via RS232
protocol. Full page image can be found in the appendix.

The LED must be in a very dark environment when in
use in order to ensure that the detected signal reaches 0V
when the LED is off. One large difference between this proof



OLIN-NASA RESEARCH GROUP, JULY 2011 6

of concept and our actual setup is that the output of the
photodiode requires no filtering. When it detects LED light
pulses, it outputs a signal with a high enough resolution to be
piped, amplified but unfiltered, into to the MAX232 and then
through the computer without perceivable errors. The X-ray
detector output, on the other hand, could be best characterized
as high and low amplitude noise, with a highly variable SNR,
requiring significant filtering.

RS232 Transmission

July 28, 2011 marks the first successful digital transmission
via X-rays. We use RS232 protocol and the simple Bash echo
command in a terminal shown in Figure ??. The text of the
first signal, sent at 300 baud, is a quote by Orville Wright:
“Isnt it astonishing that all these secrets have been preserved
for so many years just so we could discover them!” Following
the first successful transmission, we incrementally increase the
baud rate, checking for frequency of errors and adjusting the
discrete component values as necessary. Concurrently, we test
the chat program and file transmission at these increasing baud
rates. We find that a signal with an approximate error rate of
one false bit every few seconds can be transmitted at speeds up
to 4800 baud, after which the signal begins to degrade. Lower
frequencies have a smaller error rate, and any transmission
speed above 4800 baud has very frequent errors.

Fig. 14. Screenshot of the first digital X-ray transmission. Sent via RS232
protocol with an MXS/MCA transceiver system.

VI. CONCLUSION

Using the X-ray transceiver system, we successfully trans-
mit digital data via an X-ray signal. The key hardware com-
ponents of our project are the LED driver used to modulate
the UV LED in the MXS, and the filtering circuitry which
conditions the output of the MCA. The current setup can
transmit clean digital signals at 4800 baud; increasing the baud
rate introduces false bits into the data stream.

VII. FUTURE WORK

Hardware

Our finished circuit successfully transmitted the first digital
X-ray signal on July 28, the day before the end of the in-
ternship. Consequently, there is a lot of opportunity for tuning
and improvements. Had we more time, our immediate next
steps would be to re-arrange the circuit. For improvements,
we recommend the following changes: keep the first three
amplifiers, but move the MAX232 after the fourth amplifier
(U6 in the Figure ??) and, in place of the final amplifier (U7),
feed the signal back through pin 10 of the MAX232 and let pin
7 be the output that feeds directly into the computer. Then the
reference of R26 can be the -12V rail instead of ground. These

changes will likely improve signal quality because the Schmitt
trigger made with U6 will have a rail-to rail signal, enabling
more hysteresis. Also, feeding the output of the op-amp to the
computer is much more dangerous than doing likewise with the
MAX232s output, because the MAX232 conditions the output
specifically for RS232 drive capability. The next step would
be to perfect the resistor and capacitor values throughout the
whole circuit, specifically in the peak-hold detectors and the
amplifier gains.

The circuit in the diagram in Figure ?? is currently tuned
(to a very rough approximation) to a transmission speed of
4800 baud. A Monte Carlo analysis could help optimize the
gain and offset parameters for various baud rates.

Within the transceiver system, there are improvements that
can be made to increase the fidelity of transmissions. Another
NASA team is making an electron focusing lens to integrate
with the MXS in order to improve the strength, precision, and
SNR of the signal. For a much more reliable and consistent
output over a much wider range of frequencies, we suggest
reworking the MCA circuit from the ground up with the idea
of digital transmission in mind. This should enable the detector
circuit to process digital signals of much higher bit rates.
If high bit rates are successfully sent, the next step would
be to transmit signals via different, faster protocols such as
Ethernet. Two transceiver systems would be useful for testing
bidirectional transmissions.

Software

To improve the signal quality on the software front, com-
pression, encryption, and error correction could be used.
Future software work can also be done to improve the quality
of the transceiver demonstration, making it more user-friendly.
It would be useful to implement a program to stream video
over RS232 or Ethernet, depending on what hardware has been
completed, and then use this to stream a video, interrupting the
signal partway through and demonstrating that the video has
been halted. An easy-to-use RS232 file transfer system and
chat client, one which doesn’t require UNIX knowledge or
experience using a terminal, would make the current demon-
stration more widely accessable.

ACKNOWLEDGEMENTS

We would like to thank Dr. Brad Minch, Dr. Jos Oscar Mur-
Miranda, and Dr. Siddhartan Govindasamy for their assistance
and advice with the circuitry on this project, and we would
like to thank Dr. Keith Gendreau and Dr. Steve Holt for their
mentorship. We would also like to thank Amber Clark for her
help editing this report.

APPENDIX

A. Complete Software Guide

A complete software guide can be found on nasa.olin.edu/
projects/2011/dcom/software guide.php



OLIN-NASA RESEARCH GROUP, JULY 2011 7

B. Arduino Custom Transmitter

// Initialize instance variables
int highpin = 13;
int lowpin = 12;
int commpin = 11;
byte test = B10101010;
void setup() {
// tell each pin what it does (input or output)
pinMode(highpin, OUTPUT);
pinMode(lowpin, OUTPUT);
pinMode(commpin, INPUT);
Serial.begin(9600);
send(test);
}

void loop() {
if (Serial.available() > 0) {

// read the incoming byte:
test = Serial.read();

send(test);
// say what you got:
}

}

// tells the arduino to send each bit
// of the byte that you give it
// individually
boolean send(byte b){
Serial.print("sending: ");
Serial.println(b,BIN);
// use a bitwise "and" to compare
// each byte to a byte with only
// one bit. Then decide to send
// a "high" if the bit is 1, and a
// "low" if the bit is 0
if ((b & B10000000) == B10000000){

high();Serial.println(1);}
else{low();Serial.println(0);}
if ((b & B01000000) == B01000000){

high();Serial.println(1);}
else{low();Serial.println(0);}
if ((b & B00100000) == B00100000){

high();Serial.println(1);}
else{low();Serial.println(0);}
if ((b & B00010000) == B00010000){

high();Serial.println(1);}
else{low();Serial.println(0);}
if ((b & B00001000) == B00001000){

high();Serial.println(1);}
else{low();Serial.println(0);}SSSS
if ((b & B00000100) == B00000100){

high();Serial.println(1);}
else{low();Serial.println(0);}
if ((b & B00000010) == B00000010){

high();Serial.println(1);}
else{low();Serial.println(0);}
if ((b & B00000001) == B00000001){

high();Serial.println(1);}
else{low();Serial.println(0);}
return true;
}

// send a "high" bit
// returns true when done
boolean high(){
// raises the Mark pin ("High") to 5 V
digitalWrite(highpin,HIGH);
// waits until the Com pin is high
while (digitalRead(commpin) == LOW){
}
// turns off the Mark pin
digitalWrite(highpin,LOW);
// waits until the Com pin is low
// before finishing
while (digitalRead(commpin) == HIGH){
}
return true;
}

// sends a 0 bit (uses same process as
// high() does to send a 1)
boolean low(){
digitalWrite(lowpin,HIGH);
while (digitalRead(commpin) == LOW){
}
digitalWrite(lowpin,LOW);
while (digitalRead(commpin) == HIGH){
}
return true;
}

C. Arduino Custom Receiver

int highpin = 13;
int lowpin = 12;
int commpin = 11;

void setup() {
pinMode(highpin, INPUT);
pinMode(lowpin, INPUT);
pinMode(commpin, OUTPUT);
Serial.begin(9600);
}

void loop() {
// if the Mark pin is on, it’s



OLIN-NASA RESEARCH GROUP, JULY 2011 8

// receiving a 1
if(digitalRead(highpin) == HIGH){
// do the handshake
digitalWrite(commpin,HIGH);

// wait until the Mark pin turns off
// again, meaning the other computer
// has received the handshake
while(digitalRead(highpin) == HIGH){
}
// then turn off the Com pin
digitalWrite(commpin,LOW);
// output the bit you received
Serial.print(1);
}

// if the Space pin is on it’s
// receiving a 0
if(digitalRead(lowpin) == HIGH){
// do the handshake
digitalWrite(commpin,HIGH);

// wait until the Space pin turns off
// again, meaning the other computer
// has received the handshake
while(digitalRead(lowpin) == HIGH){
}
// then turn off the Com pin,
// completing the handshake
digitalWrite(commpin,LOW);
// output the bit you received
Serial.print(0);
}
}

D. Computer to Computer Chat Script

#!/bin/bash

port="/dev/ttyUSB0"

stty speed 4800 rows 0 columns 0 line 0
intr ˆC quit ˆ\\ erase ˆ? kill ˆU eof ˆA
start ˆQ stop ˆS susp ˆZ rprnt ˆR werase
ˆW lnext ˆV flush ˆO min 1 time 0 -parenb
-parodd cs8 hupcl -cstopb cread -clocal
-crtscts -ignbrk -brkint -ignpar -parmrk
-inpck -istrip -inlcr -igncr -icrnl -ixon
-ixoff -iuclc -ixany -imaxbel -iutf8 -opost
-olcuc -ocrnl -onlcr -onocr -onlret -ofill
-ofdel nl0 cr0 tab0 bs0 vt0 ff0 -isig
-icanon -iexten -echo -echoe -echok -echonl
-noflsh -xcase -tostop -echoprt -echoctl
-echoke < ${port};
stty speed 4800 < ${port}

clear;
bold=‘tput smso‘;

offbold=‘tput rmso‘;
trap ’kill $!; pkill cat;exit’ INT

while true
do
cat ${port}
done &

while true
do
read a
echo "${bold}${a}${offbold}" > ${port}
done

kill $!;pkill cat;
exit

E. Arduino to Arduino Transmitter

#include <SoftwareSerial.h>

#define rxPin 2
#define txPin 3

SoftwareSerial mySerial =
SoftwareSerial(rxPin, txPin);

void setup() {
// setup software serial for output
pinMode(rxPin, INPUT);
pinMode(txPin, OUTPUT);
mySerial.begin(9600);
}

void loop() {
mySerial.print(2,BIN);
delay(500);
}

F. Arduino to Arduino Receiver

#include <SoftwareSerial.h>

#define rxPin 2
#define txPin 3

SoftwareSerial mySerial =
SoftwareSerial(rxPin, txPin);

void setup() {
// setup software serial for input
pinMode(rxPin, INPUT);
pinMode(txPin, OUTPUT);
mySerial.begin(9600);

// setup hardware serial port
Serial.begin(9600);
}



OLIN-NASA RESEARCH GROUP, JULY 2011 9

void loop() {
char someChar = mySerial.read();
Serial.print(someChar,BIN);
delay(500);
}



OLIN-NASA RESEARCH GROUP, JULY 2011 10

G
.

LE
D

C
on

tr
ol

C
ir

cu
it



OLIN-NASA RESEARCH GROUP, JULY 2011 11

H
.

C
on

di
tio

ni
ng

C
ir

cu
it



OLIN-NASA RESEARCH GROUP, JULY 2011 12

I.
P

ro
of

of
C

on
ce

pt


